3TB4: Lab 3
Kavya Sundaresan 400307169
Noor Al-Rajab 400291137

Group 3

Shift Register

The shift register shifts samples by N samples, where N is the product of number of taps with tap
distance. When shifting a series of sound values, a delay is produced, which will be used in the
echo machine. The number of samples doesn’t mean much, but since the sampling rate is known,
the shift (and therefore the echo delay) in seconds can be calculated. The desired delay was
something between 0.25 sec and 0.75 sec. Playing with the numbers, the number of taps and tap
distance variables were eventually set to 64 and 60 respectively. The shiftin samples is therefore
60*64=3840, and to get the delay value in seconds, knowing that the sampling rate is 8000 samples
per second, delay=3840/8000=0.48 sec (about half a second).

Timescale L ps /7 L ps
// synopsys transTlate_on
imodule shift_register (

clock,
shiftin,
shiftout,
taps);

input clock;

input [15:0] shiftin;
output [15:0] shiftout;
output [511:0] taps;

wire [15:0] sub_wire0Q;

wire [511:0] sub_wirel;

wire [15:0] shiftout = sub_wireQ[15:0];
wire [511:0] taps = sub_wirel[511:0];

altshift_taps ALTSHIFT_TAPS_component (
.clock (clock),
.shiftin (shiftin),
.shiftout (sub_wireQ),
.taps (sub_wirel)
// synopsys translate_off

.aclr O,

.clken (O,

.sclr O

// synopsys transTlate_on

defparam

ALTSHIFT_TAPS_component.intended_device_family = "Cyclone V",
ALTSHIFT_TAPS_component.Ipm_hint = "RAM_BLOCK_TYPE=MLAB",
ALTSHIFT_TAPS_component.Ipm_type = "altshift_taps"”,
ALTSHIFT_TAPS_component.number_of_taps = 64,
ALTSHIFT_TAPS_component.tap_distance = 60,
ALTSHIFT_TAPS_component.width = 16;

endmodule

Echo Machine

The way the echo machine produces the echo effect is by taking the original signal, delaying it
(using the shift register) and attenuating it (done by dividing it by a value through a bitwise shift to
the right) and then adding it to the original signal. That way, the output would be the original signal
and a quieter, delayed version. Since it’s a loop, after the original signal ends, the echo would also
be fed back into the delay and attenuated, resulting in a series of echoes that gradually become
quieter until silence. The division done in this project was by 4, which was done by a bitwise shift to
the right by 2 bits.

Delayed and
16 Delayeld attenuated
Delay oL / signal
Original 16 | 16 at |
signal 16 16

module echo_machine (input clk, input signed [15:0] in, output signed [15:0] out);
wire signed [15:0] delay_in;
wire signed [15:0] delay_out;
assign delay_in = out;
shift_register(.clock(clk), .shiftin(delay_in), .shiftout(delay_out));
assign out = in + (delay_out >>> 2); //need to correct division factor

endmodule
Multiplier

The multiplier module multiplies 2 signed arrays of 16 bit length and returns a 32 bit output.

imodule multiplier (
dataa,
datab,
result);

input [15:0] dataa;
input [15:0] datab;
output [31:0] result;

wire [31:0] sub_wire0O;
wire [31:0] result = sub_wire0[31:0];

1 Tpm_mult Tpm_mult_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0),
.aclr (1'h0),
.clken (1'b1),
.clock (1'b0),

.sclr (1'h0),
.sum (1'b0));
defparam
Tpm_mult_component.lpm_hint = "MAXIMIZE_SPEED=5",
Tpm_mult_component.Ipm_representation = "SIGNED",
Tpm_mult_component.Ipm_type = "LPM_MULT",
Tpm_mult_component. Tpm_widtha = 16,
Tpm_mult_component.Ipm_widthb = 16,
Tpm_mult_component.Ipm_widthp = 32;
endmodule
Filter

The FIR filter removes a noise of 2000 Hz from the input audio. 12 coefficients were determined
using MATLAB for the filter. The noisy signal elements are continuously shifted right to obtain the
delayed signal. In a loop, the coefficients are multiplied with each sample of the delayed signal and
the products are divided by 2'® to remove the applied factor in MATLAB. The divided values are
continuously summed to produce the clean filtered signal.

module filter(input clk, input signed [15:0] noisy_signal, output signed [15:0] filtered_signal);
integer taps = 65;
wire signed [15:0] coeff [12:0];
reg signed [15:0] delayed [15:0];
wire signed [31:0] prod [12:0];
reg signed [31:0] sum; // product of sums

assign filtered_signal = sum;
assign coeff [0] = 6375;
assign coeff [1] = 1;
assign coeff [2] = -3656;
assign coeff [3] = 3;
assign coeff [4 1 = 4171;
assign coeff [5] = 4;
assign coeff [6] = 28404;
assign coeff [7] = 4;
assign coeff [8] = 4171;
assign coeff [9] = 3;
assign coeff [10] = -3656;
assign coeff [11] = 1;
assign coeff [12] = 6375;
genvar 1i;
] generate
] for(i=0;1<=12;1i=1+1) begin: multiply
P multiplier multiply(delayed[i],coeff[i],prod[i]);
en
endgenerate
integer j;
integer k;
always @(posedge c1k)
] begin
delayed[0] <= noisy_signal;
1 for(j=0;j<11;j=j+1)begin
p delayed[j+1]<=delayed[j];
: en
] for (k=0; k<=12; k=k+1) begin
sum = sum+(prod[k]>>>15); //divides by 15 to account for MATLAB factor (2A16)
end
end
endmodule

Multiplexer

The multiplexer takes 3 inputs and uses 2 selector inputs to select one output. It first uses one
selector bit to select between 2 of the inputs and passes that to a temporary variable. Then it uses
the second selector bit to select between the temporary variable and the third input to obtain the
final output.

module mux(input[15:0] a, b, c, input sl, s2, output reg[l5:0] y);
reg[15:0] temp;
reg[15:0] dummy;
always @(sl or s2)
1 begin
temp[15:0] = ~s1 ? a[l15:0]:c[15:0];
y[15:0] <= ~s2 ? temp[1l5:0]:b[15:0];
end
endmodule

/ *

s1=0 s2=0 a
s1=0 s2=1 b
s}=l s2=0 c

DSP Subsystem

The purpose of this module is to have three modes (raw, filtered, echo) and to be able to change the
mode using two inputs, which in this lab are switches 0 and 1. This is where the 3-to-1 multiplexer is
incorporated. The multiplexers inputs were the raw signal, the output of the FIR filter, and the output
of the echo machine.

module dsp_subsystem (input sample_clock, 1input reset, input [1:0] selector, input [15:0] input_sample, output [15:0] output_sample);
wire signed [15:0] fir_output_w;
wire signed[15:0] echo_output;

reg signed[15:0] fir_output;
assign fir_output_w[15:0]=fir_output[15:0];

filter fir(sample_clock, input_sample[15:0], fir_output_w[15:0]); //must change to 15 instead of 12 Tlater
echo_machine echo(sample_clock, input_sample[15:0], echo_output[15:0]);

mux mux(input_sample[15:0], fir_output[15:0], echo_output[15:0], selector[1], selector[0], output_sample[15:0]);
//assign output_sample = input_sample;

endmodule

The echo delay was 3840 samples, which is 0.48 seconds, and the division factor used was

4.

The filter can be redesigned to use the minimum number of coefficients which will reduce
the number of multipliers needed.

Flow Status

Quartus Prime Version
Revision Name

Top-level Entity Name

Family

Device

Timing Models

Logic utilization (in ALMs)
Total registers

Total pins

Total virtual pins

Total block memory bits
Total DSP Blocks

Total HSSI RX PCSs

Total HSSI PMA RX Deserializers
Total HSSI TX PCSs

Total HSSI PMA TX Serializers
Total PLLs

Total DLLs

Successful - Thu Mar 07 15:02:25 2024
17.1.0 Build 590 10/25/2017 SJ Lite Edition
lab3

lab3

Cyclone V

5CSEMA5F31C6

Final

1,518 /32,070(5 %)

157

13/457(3%)

0

0/4,065,280(0%)

9/87(10%)

0]

0

0

0

0/6(0%)

0/4(0%)

A logic element is the smallest unit of logic. It consists of a 4-input LUT, a programmable

register and a carry chain.

The multiplexer allows the user to select between the 3 audio sources (Echo, Unfiltered
signal, Filtered signal) using switches 0 and 1, all of which are passed to the DSP

subsystem.

Since the delay is 3840 samples, and each sample consists of 16 bits, the number of
memory bits used is 3840*16=61,440 bits.

No, since the number of memory bits used in the design (61,440) was double the number of
logic blocks available on the board (32,070). Although it might be possible to do a shorter
delay, this greatly limits the customizability and making the delay that short might make it

undetectable.

